دانشجویان برق قدرت سراج

بلاگ بابا برقی ها و خانم برقی ها

دانشجویان برق قدرت سراج

بلاگ بابا برقی ها و خانم برقی ها

توضیح مختصری از پست و تجهیزات آن

توضیح مختصری از پست و تجهیزات آن

نوشته شده توسط Dj-Hamed.J مهندس برق قدرت دانشگاه سراج



پست چیست؟

پست محلی است که تجهیزات انتقال انرژی درآن نصب وتبدیل ولتاژ انجاممی شودوبا استفاده از کلید ها امکان انجام مانورفراهم می شود درواقع کاراصلی پست مبدل ولتاژ یاعمل سویچینگ بوده که دربسیاری از پستها ترکیب دو حالت فوق دیده می شود.

در خطوط انتقال DC چون تلفات ناشی از افت ولتاژ ندارد وتلفات توان انتقالی بسیار پایین بوده ودر پایداری شبکه قدرت نقش مهمّی دارند لزا اخیرا ُ این پستها مورد توجه قراردارند ازاین پستها بیشتردر ولتاژهای بالا (800 کیلو ولت وبالاتر) و در خطوط طولانی به علت پایین ; بودن تلفات انتقال استفاده می شود.

درشبکهای انتقال DC درصورت استفاده ازنول زمین می توان انرژی الکتریکی دا توسط یک سیم به مصرف کننده انتقال داد.

انواع پست:

پستها را می توان ازنظر نوع  وظیفه,هدف,محل نصب,نوع عایقی, به انواع مختلفی تقسیم کرد.

  براساس نوع وظیفه وهدف ساخت:

پستهای افزاینده , پستهای انتقال انرژی , پستهای سویچینگ و کاهنده فوق توزیع .

 

 

 برای دیدن ادامه توضیحات روی گزینه ادامه مطلب کلیک کنید. 

 

براساس نوع عایقی:

پستها با عایق هوا, پستها با عایق گازی که دارای مزایای زیراست:

پایین بودن مرکز ثقل تجهیزات در نتیجه مقاوم بودن در مقابله زلزله کاهش حجم, ضریب ایمنی بسیار بالا باتوجه به اینکه همهً قسمت های برق دار و کنتاکت ها در محفظهً گازSF6   امکان آتش سوزی ندارد,پایین بودن هزینهً نگهداری باتوجه به نیاز تعمیرات کم تر, استفاده د رمناطق بسیار آلوده و مرطوب و مرتفع .

معایب پستها با عایق گازی :

گرانی سیستم و گرانی گاز SF6 , نیاز به تخصص خاص برای نصب و تعمیرات,مشکلات حمل و نقل وآب بندی سیستم.

بر اساس نوع محل نصب تجهیزات :

نصب تجهیزات در فضای باز , نصب تجهیزات در فضای سرپوشیده .

معمولاُ پستها را از 33 کیلو ولت به بالا به صورت فضای باز ساخته وپستهای عایق گازی راچون فضای کمی دارندسرپوشیده خواهند ساخت.

 اجزاع تشکیل دهنده پست :

پستهای فشار قوی از تجهیزات و قسمتهای زیر تشکیل می شود :

  ترانس قدرت , ترانس زمین و مصرف داخلی , سویچگر ,  جبران کنندهای تون راکتیو , تاً سیسات جانبی الکتریکی ،  ساختمان کنترل , سایر تاًسیسات ساختمانی .

ترانس زمین:

از این ترانس در جاهایی که نقطهً اتصال زمین (نوترال) در دسترس نمی باشد که برای ایجاد نقطهً نوترال از ترانس زمین استفاده می شود .نوع اتصال در این ترانس به صورت زیکزاک Zn  است .

این ترانس دارای سه سیم پیچ می باشد که سیم پیچ هر فاز به دو قسمت مساوی تقسیم می شود و انتهای نصف سیم پیچ ستون اوٌل با نصف سیم پیچ ستون دوٌم در جهت عکس سری می باشد . 

ترانس مصرف داخلی:

از ترانس مصرف داخلی  برای  تغذیه  مصارف داخلی  پست استفاده می شود .

تغذیه ترانس مصرف داخلی شامل قسمتهای زیر است :

تغذیه موتورپمپ  تپ چنجر , تغذیه بریکرهای Kv20  , تغذیه فن و سیستم خنک کننده , شارژ باتری ها , مصارف روشنایی , تهویه ها .

نوع اتصال سیم پیچ ها به صورت مثلث – ستاره با ویکتورکرو)پنوع اتصال بندی DYn11  می باشد .

سویچگر:

تشکیل شده از مجموعه ای از تجهیزات که  فیدرهای مختلف  را به باسبار و یا باسبار ها را در نقاط  مختلف به یکدیگر با ولتاژ معینی ارتباط می دهند .

در پستهای مبدل ولتاژ ممکن است از دو یا سه سویچگر با ولتاژهای مختلف استفاده شود .

تجهیزات سویچگر:

باسبار:

 که خود تشکیل شده از مقره ها , کلمپها , اتصالات وهادیهای باسبار که به شکل سیم یا لولهًً توخالی و غیره است .

 بریکر , سکسیونر , ترانسفورماتورهای اندازه گیری وحفاظتی , تجهیزات مربوت به سیستم ارتباطی , وسایل کوپلاژ مخابراتی(که شامل :  موج گیر ,  خازن کوپلاژ ,  دستگاه تطبیق امپدانس است (

برقگیر: 

که برای حفاظت در برابر اضافه ولتاژ و برخورد صاعقه به خطوط است که در انواع  میله ای , لوله ای , آرماتور , جرقه ای و مقاوتهای غیرخطی است .

جبران کنندههای توان راکتیو:

جبران کننده ها شامل خازن وراکتورهای موازی می باشندکه به صورت اتصال ستاره در مدار قرار دارند و نیاز به فیدر جهت اتصال به باسبار می باشند که گاهی اوقات راکتورها در انتهای خطوط انتقال نیز نصب می شوند .

 

انواع راکتور ازنظر شکل عایقی :

راکتور با عایق بندی هوا , راکتور با عایق بندی روغنی .

انواع نصب راکتور سری :

راکتورسری با ژنراتور, راکتورسری باباسبار, راکتورسری با فیدرهای خروجی, راکتورسری بافیدرهای خروجی به صورت گروهی.

ساختمان کنترل:

کلیهً ستگاه های اندازه گیری پارامترها, وسایل حفاظت وکنترل تجهیزات ازطریق کابلها از محوطهً بیرونی پست به داخل ساختمان کنترل ارتباط می یابد همچنین سیستمهای تغذیه جریان متناوب ومستقیم (AC,DC) درداخل ساختمان کنترل قراردارند,این ساختمان اداری تاًسیسات مورد نیازجهت کار اپراتور می باشد که قسمت های زیر را دارا می باشد :

اتاق فرمان , فیدر خانه , باطری خانه , اتاق سیستم های توضیع برق  (AC,DC) , اتاق ارتباطات , دفتر , انبار و ...

باطری خانه:

جهت تامین برقDC برای مصارف تغذیه رله های حفاظتی, موتورهای شارژ فنر و... مکانیزم های فرمان و روشنایی اضطراری و... نیاز به  باطری خانه دارند که در اطاقکی تعدادی باطری با هم سری می شوند و دردو مجموعه معمولاً 48 و110ولتی قرارمی گیرد وهرمجموعه با یک دستگاه باطری شارژ کوپل می شوند .

اصول کار ترانسفورماتور :

1- تعریف ترانسفورماتور:

ترانس فورماتور از دو قسمت اصلی هسته و دو یا چند قسمت سیم پیچ که روی هسته پیچیده می شود تشکیل می شود , ترانس فورماتور یک دستگاه الکتریکی است که در اثرالقای مغناطیسی بین سیم پیچ ها انرژی الکتریکی را ازمدارسیم پیچ اولیه به ثانویه انتقال می دهد بطوری که در نوع انرژی و مقدار آن تغییر حاصل نمی شود ولی ولتاژ و جریان تغییر می کند بنابراین باصرف نظراز تلفات ترانس داریم :

P1=P2 --- V1 I1 = V2 I2= V1/V2 = I2/I1 = N1/N2

که اصول کار ترانس فورماتور براساس القای متقابل سیم پیچ ها است .

2ـ اجزاع ترانسفورماتور:

هسته , سیم پیچ ها , مخزن روغن , رادیاتور , بوشینگ های فشار قوی وضعیف , تپ چنجرو تابلوی مکانیزم آن , تابلوی فرمان , وسایل اندازه گیری و حفاظتی ,  شیرها و لوله های ارتباطی ,  وسایل خنک کننده ترانس جریان , شاسی و چرخ , ...   

 

3ـ انواع اتصّال سیم پیچ:    

اتصال سیم پیچ های اولیه و ثانویه در ترانس معمولاً به صورت ستاره مثلث , زیکزاک است .

4ـ ترانسفورماتورولتاژ(PT,VT):

چون ولتاژهای بالاتر از 600 V را نمی توان به صورت مستقیم بوسیله دستگاه های اندازه گیری اندازه گرفت , بنابراین لازم است که ولتاژ را کاهش دهیم تا بتوان ولتاژ را اندازه گیری نمود و یا اینکه در رله های حفاظتی استفاده کرد ترانس فورماتور ولتاژبه این منظوراستفاده می شودکه  ترانس فورماتور ولتاژ از نوع  مغناطیسی دارای دو نوع  سیم پیچ اولیه و ثانویه می باشد که برای ولتاژهای بین 600 V   تا 132 KV استفاده می شود .

5ـ ترانسفورماتورجریان(CT):     

جهت اندازه گیری و همچنین سیستم های حفاظتی لازم است که از مقدار جریان عبوری از خط اطلاع پیدا کرده و نظر به اینکه مستقیماً نمی شود از کل جریان خط دراین نوع دستگاه ها استفاده کرد و در فشار ضعیف و فشار قوی علاوه بر کمییت , موضوع مهم ایزوله کردن وسایل اندازه گیری و حفاظتی از اولیه است لزا بایستی به طریقی جریان را کاهش داده و از این جریان برای دستگاه های فوق استفاده کنیم واین کار توسط ترانس جریان انجام می شود

پارامترهای اساسی یک  CT :

نقطه اشباع , کلاس ودقت CT , ظرفیتCT  , نسبت تبدیل CT .

6 ـ  نسبت تبدیل ترانس جریان:

جریان اولیه Ct  طبق IEC 185  مطابق اعداد زیرمی باشد که اصولاً باید در انتخواب جریان اولیه یکی از اعداد زیر انتخواب شود:

10-15-20-25-30-40-50-60-75-100-125-150   Amp

درصورتیکه نیاز به جریان اولیه بیشتر باشد باید ضریبی از اعداد بالا انتخواب شود .  جریان ثاویه  Ct  هم  طبق IEC 185  مطابق اعداد زیرمی باشد : 1-2-5

برای انتخواب نسبت تبدیل  Ct باید جریان اولیه را متناسب با جریان دستگاه های حفاظت شونده و یا دستگاه هایی که لازم است بار آنها اندازه گیری شود انتخواب کرد .

در موردCt  تستهای مختلفی انجام می شودکه رایج ترین آنهاعبارت اند:

تست نطقه اشباع , تست نسبت تبدیل , تست عایقی اولیه و ثانویه .

7ـ حفاظتهای ترانس: 

الف : حفا ظتهای دا خلی :

 1 - اتصال کوتاه :

 A دستگاه حفاظت روغن (رله بوخهلتز, رله توی ب) ,  B دستگاه حفاظت درمقابل جریان زیاد( فیوز, رله جریان زیادی زمانی ) , C رله دیفرانسیل

 

2 -اتصال زمین :

 A مراقبت روغن با رله بوخهلتز, B رله دیفرانسیل, C سنجش جریان زمین

3 -افزایش فلوی هسته :                  A اورفلاکس

ب : حفا ظتهای خارجی :

1- اتصالی در شبکه :

 A فیوز, B رله جریان زیاد زمانی , C رله دیستانس

 2- اضافه بار :

 A ترمومتر روغن و سیم پیچ , B رله جریان زیاد تاخیری , C رله توی ب , D منعکس کننده حرارتی

 3- اضافه ولتاژ در اثر موج سیار :

 A توسط انواع برق گیر

ج : خفا ظتهای غیر الکتریکی :

1- کمبود روغن : رله بوخهلتز ,

2- قطع دستگاه خنک کن

3-نقص در تپ چنجر : رله تخله فشار یا گاز

 

 

انواع زمین کردن :

1ـ زمین کردن حفاظتی:

زمین کردن حفاظتی عبارت است از زمین کردن کلیه قطعات فلزی تاًسیسات الکتریکی که در ارتباط مستقیم ( فلزبه فلز ) با مدار الکتریکی قرار ندارد .

این زمین کردن بخصوص برای حفاظت اشخاص درمقابل اختلاف سطح تماس زیاد به کار گرفته می شود .

2ـ زمین کردن الکتریکی:

زمین کردن الکتریکی  یعنی  زمین کردن  نقطه ای از دستگاه های الکتریکی و ادوات برقی که جزئی ازمدارالکتریکی می باشد.

مثل زمین کردن مرکز ستارهً سیم پیچ ترانسفورماتور یا ژنراتور .

که این زمین کردن بخاطرکارصحیح دستگاه و جلوگیری از ازدیاد فشار الکتریکی فازهای  سالم  نسبت به  زمین در موقع تماس یکی از فازهای دیگر با زمین .

3ـ روشهای زمین کردن:

روش مستقیم :

مثل وصل مستقیم  نقطه صفر ترانس  یا  نقطه ای از سیم  رابط  بین ژنراتور جریان دائم به زمین .

روش غیر مستقیم :

مثل وصل نقطه صفر ژنراتور توسط یک مقاومت بزرگ به زمین یا اتصال نقطه صفر ستاره ترانس توسط  سلف پترزن (پیچک محدود کننده جریان زمین(

زمین کردن بار:

باید نقطه صفریااصولاً هرنقطه از شبکه که پتانسیل نسبت به زمین دارد توسط یک فیوز فشارقوی (الکترود جرقه گیر) به زمین وصل می شود.

ولتاژهای کمکی :

1ـ ولتاژکمکی (DC 110):

این ولتاژ درپستها یکی از پر اهمیت ترین ولتاژهای مورد نیاز تجهیزات است . کلیه فرامین قطع و وصل بریکر وتغذیه اکثر رله های موجود در هر پست ازهمین منبع تامین می شود .

این ولتاژ توسط  یک دستگاه  شارژر سه فاز و یک  مجموعه 10 ستی باطری12 ولتی به آمپراژ 165 آمپر ساعت , یک تغذیه حفاظتی مطمئن را به وجود میآورد.

ولتاژ 110 ولتی مستقیم وارد تابلوی توضیع DC  به مشخصه (+SB) شده واز آنجا جهت مصارف گوناگون از جمله کلیه فرامین قطع و وصل, تغذیه موتور شارژ فنر بریکرهای KV 63 , تغذیه سیستم اضطراری روشنایی توضیع می شود ضمناً هر خط تغذیه مجهز به فیوزهای مجزامی باشد .

 

 

2ـ ولتاژکمکی (AC):

ولتاژ کمکی متناوبV 380/220 , توسط ترانس های کمکی هریک به قدرت  KVA 100تامین می گردد که سمت اولیه KV 20 توسط فیوزــ های10A/20KV  حفاظت می شود .

مراحل ورود ولتاژ کمکی به تابلوی توزیع به این ترتیب است که ولتاژ وارد باکس (AL – T– QS – Q ) داخل محوطه می شود که خود باکس شامل کلید پاپیونی , فیوزهای کتابی و بریکر V400 می باشد .

سپس توسط کابل وارد تابلوی توزیع +SA  شده و از طریق کلیدهای پاپیونی که به طور مکانیکی با هم اینترلاک شده اند وارد باسبار توزیع می شود , ولتاژ متناوب V380/220 جهت تغذیه سیستم های روشنایی وگرمایی وموتورهای شارژ بریکرهای KV20,موتورتپ چنجرترانس و شارژها و ... استفاده می شود.

اندازه گیری :

دستگاهای اندازه گیری روی تابلو کنترل برای قسمتهای مختلف شامل:

فیدر ورودیKV63  شامل آمپرمتر با سلکتورسویچ ( تعیین بالانس بودن یا نبودن فازها ) , ولتمتر با سلکتورسویچ .

فیدر ورودی KV20 شامل آمپرمتر با سلکتور , ولتمتر با سلکتور مگاوات متر و مگاوار متر .

فیدر خروجی KV20 شامل آمپرمتر با سلکتورسویچ فازها .

فیدرورودی KV20 درداخل فیدر خانه شامل آمپرمتربا سلکتورسویچ , ولتمتر با سلکتورسویچ .

طراحی ومدل سازی سیستم های توزیع:

معرفی سیستمهای توزیع:

از اجزای اصلی یک سیستم قدرت الکتریکی ، سیستم توزیع به طور سنتی ، به صورت یک سیستم نه چندان جذاب توصیف شده است . در نیمة پایانی قرن بیستم ، طراحی ، بهره برداری در تولید و همچنین در بخش ادوات انتقال انرژی ، باعث به وجود آمدن رقابت تنگاتنگی بین مهندسان و محققان در این عرصه گشت . نیروگاهها بزرگ و بزرگتر شدند . خطوط انتقال متقاطع ، مناطق را مانند شبکه های به هم متصل در آورند . این اتصالات به هم پیوستة شبکه ها باعث شد که به تحلیل و تکنیکهای کاربردی پیشرفته تری نیاز پیدا کنیم . هم زمان سیستم های توزیع کار انتقال توان را با تحلیل یا حتی بدون تحلیل ، به آخرین مصرف کننده ادامه دادند . در نتیجه ، سیستم های توزیع بدین صورت طراحی شدند . حال زمان عوض شده ، لذا بسیار مهم و لازم است که سیستمهای توزیع باحداکثر ظرفیت و به صورت بهینه کار کنند . بعضی از سوالاتی که نیاز به پاسخ دارند ، عبارتند از :

1- حداکثر ظرفیت چیست ؟

2- چطور باید این ظرفیت را بدست آورد ؟

3- محدودیت های کاری که باید رعایت شوند ، کدامند ؟

4- چه کاری می توان انجام داد تا سیستمهای توزیع در محدودة کاری خودی عمل کنند ؟

5- برای بهینه کردن سیستم توزیع چه باید کرد ؟

 اگر یک سیستم توزیع درست و دقیق مدل شود ، تمام سوالات بالا را می توان پاسخ داد .

 هدف این بخش ، به دست آوردن مدلهای دقیق برای تمام اجزای اصلی یک سیستم توزیع است . هر گاه مدلها ایجاد شوند ، تکنیکهای آنالیز حالت پایدار و اتصال کوتاه نیز به دست می آیند .

1-1 سیستم توزیع

یک سیستم توزیع بطور معمول ، از یک پست توزیع آغاز می شود که بوسیلة یک یا چند خط انتقال فرعی تغذیه می شود . در بعضی موارد ، یک پست توزیع بوسیلة خط انتقال ولتاژ بالا ، بطور مستقیم تغذیه می شود که در آن حالت ، سیستم انتقال فرعی وجود نخواهد داشت . ساخت و طراطی هر پست ، به کمپانی سازندة آن بستگی دارد که می تواند یک یا چند فیدر ( تفذیه گر ) اصلی را سرویس دهی نماید . به جز چند مورد استثنایی ، فیدرها همگی شعاعی هستند . این بدین معنا است که تنها یک راه برای پخش توان از پست توزیع به مصرف کننده وجود دارد .

1- 2 پستهای توزیع

1- قسمت سوئیچ ولتاژ بالا و پایین :  قطع و وصل ولتاژبالا به وسیلة یک سوئیچ ساده انجام می شود . پست گسترده تر ممکن است از بریکر های ولتاژ بالا در طراحی های مختلف شینه بالا استفاده کنند . قطع و وصل ولتاژ پایین در این شکل ، بریکر های کنترل شده به وسیلة رله ها انجام می شود و در بسیاری از حالات به جای ترکیب بریکر و رله از یک ریکلوزر ( Recloser ) استفاده می شود . در بعضی از طراحی های پست علاوه بر یک بریکر برای شینه ولتاژ پایین ، بریکر هایی نیز برای هر فیدر وجود دارد . همانند حالت شینه ولتاژ بالا ، برای شینه ولتاژ پایین نیز طراحی های گوناگونی می تواند وجود داشته باشد .

شبکه توزیع ( Subtransmissn Line )

کلید جدار ساز ( Disconnect Switch )

فیوز ( Fuse )

ترانس ( Tranformer )

تنظیم کننده ولتاژ ( Voltage Regulator )

لوازم اندازه گیری Meters

کلید های بریکر ( Circuit Breakers )

فیدرهای اولیه ( Primary Feeders )

2- انتقال ولتاژ : مهمترین کار یک پست توزیع ، کاهش ولتاژ به سطح ولتاژ توزیع است . در سایر طراحی های پستها ممکن است که از دو یا چند ترانسفورماتور سه فاز استفاده شود . ترانسفورماتور پست به صورت یک ترانس سه فاز و یا سه ترانسفورماتور تک فاز متصل به هم به صورت اتصالهای استاندارد طراحی شود . سطوح استاندارد مختلفی برای ولتاژ وجود دارد که بعضی از آنها عبارتند از : 12.47 KV , 13.2 KV , 14.4 KV , 23.9 KV KV , 34.5 KV KV که در سیستم های قدیمی ، KV 4.16 بوده است .

3- رگولاسیون ولتاژ : از آنجایی که بار روی فیدرها تغییر می کند ، افت ولتاژ بین پست و مصرف کننده نیز تغییر می نماید . برای این که ولتاژ مصرف کننده در محدودة قابل قبول باقی بماند ، باید ولتاژ پست با تغییرات بار تغییر کند . ولتاژ ، با رگولاتور نوع پله ای تنظیم ( رگوله ) شده است که به ولتاژ اجازه می دهد تا حول 10% ± در سمت شینه ولتاژ پایین نوسان کند . گاهی اوقات این عمل توسط ترانسفورماتور با سر متغییر ( LTC ) انجام گیرد . LTC سر سیم پیچ ترانسفورماتور ولتاژ کم را طبق تغییرات بار عوض می کند . بسیاری از ترانسفورماتورهای پست ، یک سر ثابت روی سیم پیچ ولتاژ بالا دارند . وقتی که ولتاژ منبع بالاتر یا پایین تر از ولتاژ نامی باشد ، از این سر استفاده می شود . در تنظیمات ، سر ثابت می تواند بین 5%± ولتاژ تغییر کند . خیلی از اوقات به جای رگولاتور شینه یا شینیه هر فیدر دارای رگولاتوری از آن خود است . این رگولاتور می تواند بفرم رگولاتور سه فاز یا رگولاتورهایی به صورت فازهای مستقل از هم عمل نمایند .

4- حفاظت : پست توزیع باید در مقابل اتصال کوتاه محفاظت شود .تنها حفاظت اتوماتیک در مقابل اتصال کوتاه داخل پست بوسیلة فیوزهای موجود در سمت ولتاژ بالای ترانسفورماتور صورت می گیرد . همان طور که طراحی پست ها پیچیده می شود ، شماهای حفاظتی گسترده تری باید برای حفاظت ترانسفورماتور ، شینه های ولتاژ کم ، شینه های ولتاژ بالا و بسیاری تجهیزات دیگر در نظر گرفته شود .

5- اندازه گیری : هر پست توزیع ، چند شیوه برای اندازه گیری دارد. این اندازه گیری می تواند به صورت یک اندازه گیری آنالوگ ساده ، از مقدار جریان جاری در پست نمایش جریانهای حداقل و حداکثر که در زمانهای خاص ( یک دوره تناوب ) باشد . ثبت دیجیتالی این اندازه گیری ها متداول است . این اندازه گیری حداقل ، متوسط و حداکثر مقدار جریان ، ولتاژ ، توان ، ضریب توان و ... را در یک محدودة زمان مشخص ثبت کی کند . زمانهای معمول برای اندازه گیری 15 دقیقه ، 30 دقیقه و یک ساعت است . این اندازه گیری های دیجیتالی ، خروجی هر ترانسفورماتور پست و خروجی هر فیدر ( تغذیه گر ) را نمایش می دهند . این پست دارای دو ترانسفورماتور با سر متغیر است که چهار خط توزیع را در بر می گیرد و با دو خط انتقال فرعی تغذیه می گردد . در شرایط عادی بریکر ها ( Circuit Breaker ) در حالات زیر قرار دارند :

بریکر بسته : X , Y , 1 , 3 , 4 , 6

بریکر باز : Z , 2 , 5

با قرار بریکرها در حالت نرمال خود ، هر ترانسفورماتور از یک خط انتقال فرعی جداگانه تغذیه و به دو خط دیگر سرویس می دهد . چنان یک خط انتقال فرعی از سرویس خارج شود ، بریکر X یا Y باز شده و بریکر Z بسته می شود . حال هر دو ترانسفورماتور از یک خط انتقال فرعی تغذیه می شوند . ترانسفورماتورها با توجه به اینکه تحت شرایط کار اضطراری باید هر چهار خط را سرویس دهند ، سایز بندی می شوند . برای مثال اگر که ترانسفورماتور 1-T خارج از سرویس دهند ، بریکر 4, 1 , X باز و بریکرهای 5 و2 بسته می شوند . با این ترکیب بریکر ها ، تمام چهار خط به وسیلة ترانسفورماتور T-2 سرویس داده می شوند

 

افزایش انتقال AC

در انتقال توان الکتریکی، انتقال به روش DC بیش از آنکه یک قاعده باشد یک استثناست. محیط هایی وجود دارد که سیستم انتقال جریان مستقیم در آنها راه حل متعارف است مانند کابل های زیر دریا و در اتصالات بین سیستم های غیر سنکرون (با فرکانس های مختلف). اما برای اغلب شرایط موجود انتقال توان به صورت جریان متناوب کماکان مناسب است.

در تلاش های اولیه انتقال توان الکتریکی، از جریان مستقیم استفاده می شد. اما به هر حال در این دوران سیستم جریان متناوب برای انتقال توان بین نیروگاه ها و ماشین آلات استفاده کننده از این انرژی بر سیستم انتقال توان جریان مستقیم فائق آمد. مزیت اصولی سیستم جریان متناوب قابلیت استفاده از ترانسفورماتور برای انتقال موثر سطح ولتاژ به کار رفته در توان انتقالی بود.

با توسعه ماشین های جریان متناوب موثر، مانند موتور القایی، استفاده از جریان متناوب معمول شد. ( جنگ جریان ها را مشاهده کنید.)

توانایی انتقال سطح ولتاژ یک امر مهم اقتصادی و فنی است که بایستی مد نظر قرار گیرد، با وجود اینکه ولتاژهای بالا سخت تر مورد استفاده واقع می شوند و خطرناک تر هستند، اما سطح جریان پایین تری که برای ولتاژ های بالا مورد نیاز است، برای یک سطح توان معین منجر به استفاده از کابل های کوچکتر و تلفات توان کمتری به صورت گرما می شود. انتقال توان همچنین می تواند توسط ولتاژ حداکثر محدود شود.

یک خط جریان مستقیم که در ولتاژ حداکثری برابر یک خط جریان متناوب کار می کند، می تواند توان بسیار بیشتری را به نسبت جریان متناوب تحت این محدودیت ولتاژ حمل کند. بنابراین با مناسب بودن ولتاژ بالا برای انتقال توان زیاد و مناسب بودن ولتاژ پایین تر برای بهره برداری های صنعتی و داخلی، استفاده از سیستم جریان متناوب به دلیل قابلیت تبدیل سطح ولتاژ آن به سطوح مختلف، برای انتقال توان عام شد.

هیچ وسیله معادلی برای ترانسفورماتور در جریان مستقیم وجود ندارد و بنابراین به کارگیری ولتاژ مستقیم بسیار مشکل تر است.

مزیت های HVDC بر انتقال جریان متناوب

علی رغم اینکه سیستم انتقال توان جریان متناوب غالب است اما در برخی از کاربردها، HVDC ترجیح داده می شود:

کابل های زیر دریا (مانند کابل 250 کیلومتری بین سوئد و آلمان) انتقال توان زیاد در مسافت های بلند از یک نقطه به یک نقطه دیگر و بدون تپ های میانی، برای مثال در مناطق دور افتاده.

افزایش ظرفیت یک شبکه برق در شرایطی که نصب سیم های اضافی مشکل زا یا هزینه بردار است.

امکان انتقال توان بین سیستم های توزیع غیر سنکرون جریان متناوب.

کاهش سطح مقطع سیم کشی و دکل های برق برای یک ظرفیت انتقال داده شده. HVDC می تواند در هر هادی توان بیشتری را انتقال دهد چرا که برای یک توان نامی داده شده ولتاژ ثابت در یک خط جریان مستقیم پایین تر از حداکثر ولتاژ در یک خط جریان متناوب است. این ولتاژ ضخامت عایق و فاصله گذاری بین هادی ها را تعیین می کند.

اتصال نیروگاه های معین به شبکه توزیع

پایدار کردن شبکه های برقی که بیشتر AC هستند.

خطوط بلند زیر دریا دارای ظرفیت خازنی بالایی هستند. این امر موجب می شود که توان جریان متناوب به سرعت و به شدت به صورت تلفات راکتیو و دی الکتریک حتی در کابل های با طول ناچیز تلف شود. HVDC می تواند توان بیشتری در هر هادی انتقال دهد چرا که برای یک توان نامی ولتاژ ثابت در یک خط جریان مستقیم پایین تر از ولتاژ حداکثر یک خط جریان متناوب است. این ولتاژ تعیین کننده ضخامت عایق به کار رفته و فاصله بین هادی هاست. این روش، استفاده از سیم ها و مسیرهای موجود را برای انتقال توان بیشتر در منطقه ای که مصرف توانش بالاتر است را ممکن می سازد و موجب کاهش هزینه ها می شود.

مزیت های احتمالی بهداشتی سیستم HVDC بر سیستم جریان متناوب

برای مدتی این گمان وجود داشت که بین میدان القایی یک جریان متناوب (خصوصاً در فرکانس های عمومی خطوط که 50 و 60 هرتز است) و امراض خاصی ارتباط وجود دارد. یکی از خواص سیستم جریان مستقیم این است که دیگر چنین میدان های مغناطیسی متناوبی وجود ندارند. اخیرا در مطالعات آزمایشگاهی نشان داده شده است که چنین میدان های متناوبی منجر به افزایش اشباع رادیکال های آزاد در جرم خون حیوانات می شود (این افزایش می تواند توسط آنتی اکسیدان ها جلوگیری شود). رادیکال های آزاد به عنوان علل احتمالی تعدادی از بیماری ها شناخته شده اند. مزایای این سیستم تنها شامل آنهایی می شود که در معرض خطوط انتقال زندگی می کنند چرا که مشکلات احتمالی میدان های مغناطیسی با انتقال جریان متناوب جریان زیاد و نیز ترانسفورماتورها، موتورها و ژنراتورهای مرتبط با این جریان و حتی وسایل خانگی عادی مانند ماشین اصلاح الکتریکی با سیم پیچ و (خصوصا) مسواک های الکتریکی که به صورت القایی شارژ می شوند، ارتباط دارد.

اتصالات بین شبکه های جریان متناوب

با به کار گیری فن آوری تریستور تنها شبکه های جریان متناوب سنکرون را می توان به هم متصل کرد؛ یعنی شبکه هایی که با سرعت یکسان و فاز مشابه نوسان می کنند. بسیاری از مناطقی که مایل به اشتراک گذاشتن توان هایشان هستند دارای شبکه ای غیر سنکرون هستند.

ارتباطات جریان مستقیم به چنین مناطقی این امکان را می دهد که به هم متصل شوند. اما بهر حال سیستم های جریان مستقیمی که بر پایه ترانزیستورهای IGBT هستند اتصال سیستم های غیر سنکرون جریان متناوب را ممکن می سازند و نیز امکان کنترل ولتاژ متناوب و عبور توان راکتیو را فراهم می آورند. حتی یک شبکه سیاه را می توان به این روش به شبکه مورد نظر متصل کرد.

سیستم های تولید توان نظیر باتری های فتو ولتایی تولید جریان مستقیم می کنند. توربین های آبی و بادی تولید جریان متناوبی در فرکانسی وابسته به سرعت شاره ای که آنرا به حرکت در می آورد، می کنند. در حالت اول جریان مستقیم ولتاژ بالا را می توان مستقیما برای انتقال توان به کار برد. در حالت دوم ما دارای یک سیستم غیر سنکرون هستیم که به همین دلیل پیشنهاد می شود که از یک اتصال جریان مستقیم استفاده کنیم. در هر یک از این حالات ممکن است که تشخیص داده شود که انتقال HVDC مستقیما از نیروگاه تولید کننده به کار ببرند به ویژه در صورتی که سیستم در مناطق نامساعد قرار داشته باشد.

به طور کلی یک خط توان HVDC دو منطقه جریان متناوب از شبکه توزیع برق را به هم متصل می کند.سیستم آلات تبدیل جریان متناوب به جریان مستقیم گران هستند و هزینه قابل توجهی را در انتقال توان به خود اختصاص می دهند.

تبدیل از جریان متناوب به جریان مستقیم را یک سو سازی و تبدیل از جریان مستقیم به جریان متناوب را اینورژن می نامند. برای فاصله ای بیش از یک فاصله معین ( که حدود 50 کیلومتر برای کابل های زیر دریا و احتمالا 600 تا 800 کیلومتر برای کابل های هوایی است) کاهش هزینه ناشی از به کار گیری تجهیزات الکترونیک قدرت برای سیستم جریان مستقیم از هزینه این تجهیزات بیشتر است و عملا به کاربری این سیستم در خطوط هوایی بسیار بلند مقرون به صرفه است. چنین فاصله ای که در آن هزینه ها با درآمد ها برابر می شود را یک فاصله یربه یر (مساوی) می نامند. علم الکترونیک همچنین اجازه این را به ما می دهد که توسط کنترل اندازه و جهت جریان توان، شبکه برق را مدیریت کنیم. بنابراین یک مزیت اضافی وجود ارتباطات HVDC پایداری افزایش یافته بالقوه در شبکه انتقال است.

یک سو سازی و اینورت کردن

اجزا یک سو کننده و اینورت کننده

سیستم های اولیه از یک سو سازهای آرک ـ جیوه استفاده می کردند که قابل اعتماد نبودند. برای اولین بار شیرهای تریستوری در 1960م به کار گرفته شدند. تریستور یک نیمه هادی حالت جامد مشابه دیود است اما با یک ترمینال کنترلی اضافی که از آن در یک لحظه معین در سیکل جریان متناوب برای دادن فرمان به تریستور استفاده می شود. امروزه از ترانزیستور دو قطبی گیت عایق شده (IGBT) نیز به جای تریستور استفاده می شود.

به دلیل اینکه ولتاژ در HVDC گاهاً حول 500 کیلو ولت است و از ولتاژ شکست دستگاه های نیمه هادی بیشتر است، مبدل های HVDC با استفاده از تعداد زیادی نیمه هادی ساخته می شوند که سری شده اند. با این کار عملا ولتاژی که روی هر نیمه هادی می افتد کاهش می یابد و می توان از نیمه هادی های با ولتاژ شکست پایین تر که ارزان تر نیز هستند استفاده کرد.

برای دادن فرمان به تریستور ها نیاز به یک مدار فرمانی داریم که با ولتاژی پایین عمل می کند و می بایست از مدار ولتاژ بالای سیستم جدا شود. این کار معمولا به صورت اپتیکی یا نوری انجام می شود. در یک سیستم کنترل هایبرید تجهیزات الکترونیکی ولتاژ پایین پالس های نوری را در طول فیبرهای نوری به بخش ولتاژ بالا کنترل الکترونیکی ارسال می کنند.

یک عنصر کلید زنی کامل بدون در نظر گرفتن ساختارش عموما یک شیر خوانده می شود.

سیستم های یک سو سازی و اینورتری

یک سوسازی و اینورژن اساسا یک مکانیزم را دارا هستند. بسیاری از پست های برق بگونه ای ساخته شده اند تا بتوانند هم به صورت یک سوساز و هم به صورت اینورتر عمل کنند.

در سر جریان متناوب یک دسته از ترانسفورماتورها قرار داده می شوند که اغلب سه ترانسفورماتور تک فاز جدا از هم هستند که ایستگاه مورد نظر را از تغذیه جریان متناوب جدا می کنند تا بتوانند یک زمین محلی را ایجاد کنند و نیز تا یک ولتاژ مستقیم نهایی صحیح را تضمین کنند. سپس خروجی این سه ترانسفورماتور به یک پل یک سوساز شامل تعدادی شیر وصل می شود. ساختار اصلی شامل شش شیر است که هر سه شیر هر سه فاز را به یکی از دو سر ولتاژ مستقیم وصل می کند. اما به هر حال در این سیستم، به دلیل اینکه هر 60 درجه یک تغییر فاز داریم یا به عبارتی یک ولتاژ شش پالسه داریم، هارمونیک های این ولتاژ هم قابل ملاحضه اند.

یک ساختار بهبود یافته این سیستم از 12 شیر (که اغلب به عنوان سیستم 12 شیره شناخته شده) استفاده می کند. در این سیستم جریان متناوب ورودی را قبل از ترانسفورماتور ها به دو بخش تقسیم می کنیم. یک بخش را به یک اتصال ستاره از ترانسفورماتورها اعمال می کنیم و بخش دیگر را به یک اتصال مثلث از ترانسفورماتورها در نظر می گیریم. در این صورت شکل موج خروجی این دو ترانسفورماتور سه فاز با هم 30 درجه اختلاف فاز خواهد داشت. حال 12 شیری که داریم هر یک از این دو دسته سه فاز را به ولتاژ مستقیم وصل می کنند و در این صورت هر 30 درجه یک تبدیل فاز خواهیم داشت، یا یک ولتاژ 12 پالسه خواهیم داشت که این به معنی کاهش قابل ملاحضه هارمونیک ها است.

علاوه بر تغییر دادن ترانسفورماتورها و شیرها، می توان توسط اجزا راکتیو، پسیو و مقاومتی مختلفی برای حذف هارمونیک های موجود بر روی ولتاژ مستقیم استفاده کرد.

نگرش کلی

قابلیت کنترل پذیری عبور جریان از طریق یک سو سازها و اینورتورهای HVDC ، کاربرد آنها در اتصالات بین شبکه های غیر سنکرون و کاربرد آنها در کابل های کارای زیر دریا به این معنی است که کابل های HVDC اغلب در مرزهای ملی و برای مبادلات توان به کار می برند.

نیرو گاه های بادی داخل آب نیز نیازمند کابل های زیر دریا هستند و توربین های آنها نیز غیر سنکرون. از خطوط انتقال HVDC می توان در برقراری اتصالات بسیار بلند بین تنها دو نقطه استفاده کرد، برای مثال اطراف اجتماعات دور افتاده سیبری، کانادا و شمال اسکاندیناوی که در این صورت کاربرد این سیستم که دارای هزینه های کمتر از خطوط معمولی است منطقی به نظر می رسد.

 

ساختار سیستم

یک اتصال HVDC که در آن دو مبدل AC به DC در یک ساختمان به کار رفته اند و انتقال به صورت HVDC تنها بین خود ساختمان وجود دارد به عنوان یک اتصال HVDC پشت به پشت معروف است. این یک ساختار عمومی برای اتصال دو شبکه غیر سنکرون است.

معمول ترین ساختار یک اتصال HVDC یک اتصال ایستگاه به ایستگاه است که در آن دو ایستگاه اینورتر / یک سو ساز توسط یک اتصال اختصاصی HVDC به هم متصل می شوند. این اتصالی است که به صورت زیادی در اتصال شبکه های غیر سنکرون در خطوط انتقال بلند و در کابل های زیر دریا به کار می رود.

سیستم انتقال توان چند ترمیناله (که از سه ایستگاه یا بیشتر استفاده می کند) HVDC هم به علت هزینه های بالای ایستگاه های مبدل و اینورتر، از دو سیستم دیگر کمتر مورد استفاده قرار می گیرد. ساختار ترمینال های چندگانه می تواند سری یا موازی و یا هیبرید (ترکیبی از سری و موازی) باشد. از ساختار موازی برای ایستگاه های با ظرفیت بالا استفاده می شود در حالی که از ساختار سری برای ایستگاه های با ظرفیت کمتر استفاده می شود. سیستم های تک قطبی نوعا 1500 مگا وات را حمل می کنند.

یک اتصال دو قطبی از دو سیم استفاده می کند، یکی در پتانسیل بالای مثبت و دیگری در پتانسیل بالای منفی. این سیستم دارای دو مزیت نسبت به اتصال تک قطبی است:

اول اینکه می تواند توانی معادل دو برابر سیستم تک قطبی حمل کند که نوعا برابر 3000 مگا وات است ( جریان یکی است اما اختلاف پتانسیل بین سیم ها دو برابر است).

دوم اینکه این سیستم می تواند با وجود خطا در یکی از سیم ها، و با استفاده از زمین به عنوان یک مسیر بازگشت به کار خود ادامه دهد.

اتصالاتHVDC چند ترمیناله که بیش از دو نقطه را به هم متصل می کنند ممکن هستند اما بندرت یافت می شوند. یک مثال از این اتصالات سیستم 2000 مگاواتی Hydro Quebec است که در سال 1992 م افتتاح شد

اینترلاکها :

اینترلاکها به دو دسته الکتریکی و مکانیکی تقسیم می شوند و جهت جلوگیری از عملکردهای ناصحیح تعبیه شده اند .

اینترلاکهای یک بی خط KV63 : اینترلاک الکتریکی بین سکسیونرزمین خط و ترانس ولتاژ تعبیه شده و تازمانیکه ترانس ولتاژ تحت ولتاژ شبکه باشد , اجازه بستن به سکسیونر زمین خط داده نمی شود .

اینترلاک الکتریکی بین دو سکسیونر طرفین بریکر یک بی خط kv63 تا زمانیکه بریکر در حالت قطع قرار نگیرد اجازه باز یا بسته شدن به سکسیونرطرفین داده نمی شود .

اینترلاکهای یک KV63 ترانس فورماتور : اینترلاک الکتریکی بین بریکر KV63 وسکسیونر بی ترانس تا موقعی که بریکر در خالت قطع نباشد اجازه باز یا بسته شدن به سکسیونر داده نمی شود .

اینترلاکهای یک KV20 ترانس فورماتور: اینترلاک مکانیکی بریکر کشویی ورودی KV20 تاهنگامی که بریکر در حالت وصل باشد , پین انترلاک که در قسمت زیر بریکربین دو چرخ  عقب بریکر کشویی قرار دارد , اجازهداخل یا خارج شدن از فیدر را نمی دهد . هنگامی که بریکردر مدار وصل است پین مربوطه پشت نبشی که در قسمت کف فیدر پیچ است قراردارد واجازه خارج شدن بریکررانمی دهد .

اینترلاک الکتریکی بین سکسیونر ارت سرکابل ورودی KV20 از ترانسفورماتور و بریکرهای KV20 و KV63همان ترانس به این ترتیب است که تا موقعی که دو بریکر یاد شده درحالت قطع نباشد , اجازه بستن به سکسیونر زمین سرکابل  KV20   داده نمی شود .

ضمناً تازمانیکه سرکابل ورودی KV20 زمین باشد بریکرهای KV20 و KV63 فرمان وصل قبول نمی کند .

انترلاک باس شکن KV63: اینترلاک الکتریکی بین چهار بریکر 63 کیلو ولت قطع نباشند , اجازه بستن ویا باز کردن سکسیونر باس سکشن داده نمیشود .

همچنین در صورتی که هرچهار بریکر 63 کیلو ولت قطع باشد , اجازه باز و بسته شدن به سکسیونر باس شکن داده میشود .

اینترلاک سکسیونر زمین باسبار 20 کیلو ولت : در صورتی به سکسیونر زمین باسبار 20 کیلو ولت اجازه بسته شدن داده می شود که کلیه بریکرها همان باس (خروجی ها ,ورودی ها و باس کوپلر ) قطع باشند و سوکت بریکرهای انها نیز وصل باشد.

ـ اینترلاک کلیدهای 400 ولت AC :

اینترلاک الکتریکی بین دو بریکر 400 ولت ترانسهای کمکی: بدین ترتیب که همیشه فقط یک بریکر میتواند در حالت وصل باشد.

اینترلاک مکانیکی بین دو کلید پاپیونی روی تابو توزیع SA + طوری است که فقط یک کلید حالت وصل باشد.

کنتاکتور ستاره مثلث

اختراع کنتاکتور ستاره مثلث

موتورهای سه فاز.؟تعریف.موتور های الکترومکانیکی هستند که به دلیل قدرتی که دارند مجبور هستیم آنها را با برق سه فاز راه اندازی کنیم این موتور ها برخلاف موتورها تک فاز که 2سیم خروجی دارند این موتورها 6 خروجی دارند وباید آنها را دو به دو یا سه به سه به هم اتصال دهیم تابه سه رشته تبدیل شوند که بتوان آن را به پریز سه فاز وصل کنیم آن اتصلاتی که در بالا اشاره شد دو نوع اتصال ستاره و مثلث هستند که در اتصال ستاره موتور به طور سبک راه اندازی و کار می کندو این اتصال مفید ترین راه برای راه اندازی موتورهای سه فاز با توان بالا است چون در این اتصال موتور جریان کمتری از شبکه دریافت می کند چون در این اتصال به هر کلاف داخلی موتور 220 ولت برق وارد می شود واین راه مشکل راه اندازی اینگونه موتورها را رفع می کند اما مشکلی که این اتصال دارد این است که تنها می توان آن را برای راه اندازی موتوربکار برد چون این موتورها چون برای کارهای سنگین استفاده می شوند با این اتصال این موتورها زیر بار قفل می کنند پس با ید با اتصال مثلث کار کنند چون در اتصال مثلث به هر کلاف موتور 360 ولت برق وارد می شود واین با قدرت تمام کار کردن موتور را تضمین می کنن اما در نظر بگیریم که ما  با یک اتومبیل رانندگی می کنیم ایا این منطقی است که ما در حین حرکت با دنده 4 حرکت کنیم به طور یقین نه چون ماشین صدمه خواهد دید برای موتور سه فاز نیز همینگونه است پس اگر آن به صورت مثلث راه اندازی کنیم به طور قطع در حین راه اندازی جریان زیادی از شبکه می کشد که  این با عث صدمه زدن به خود موتور وکلاف های داخل و همچنین باعث افت فشارشدید در شبکه می شود که به دیگر مصرف کننده های مجاورنیز آسیب جدی وارد می کند اما صنعتگران نیز برای این مشکل راه حل خوبی به کار برده اند که در نوع خود بی نظیر است وآن تابلوی ستاره مثلث است که موتور را اول به صورت ستاره وبعد از اینکه موتور راه اندازی شد یا در اصطلاح علمی به دور نامی رسید آن به اتصال مثلث  تبدیل می کند که این تابلو مشکلات فوق را برطرف می سازد اما این تابلو با ابعادی حدود 2.5در 1.5  متر ساخته می شود که به طور مثال برای یک چاه کشاورزی باید یک اتاق کنترل در نظر گرفت که این هزینه زیادی در بر دارد از آن گزشته در داخل تابلو ستاره مثلث تعداد زیادی قطعات صنعتی وجود دارد که آنها را تابلو ساز به هم وصل کرده است که این کار را انجام دهد این قطعات شامل کنتاکتور تایمر بی متال کنترل فاز وخیلی قطعات دیگر است که تمام آنها از خارج کشور وارد می شوند این در این  مقطع زمانی که کشور ما در تحریم بیگانگان است یک مشکل جدی است همچنین در صورت وجود. ارز بری زیادی را بر کشور و خزانه ملی متحمل می کند.همچنین برای نصب تابول به یک متخصص نیاز است تا تابلو را به موتور وشبکه وصل کند.ومشکلات رایج دیگر این تابلو که صنعتگران بیشتر در جریا ن آن می باشند.

اما این اختراع که به کنتاکتور ستاره مثلث معروف است در اندازه حدود 20در15 در6 سانتی متراست که کار تمام دستگاه ها داخل تابلو اعم از کنتاکتور ها مدار فرمان وقدرت. بی متال. کنترل فاز .تایمر ودیگر قطعات را در همین فضای محدود انجام می دهد تازه اینکه تمام قطعات آن در ایران قابل دسترسی است ونصب آ ن نیز به وصل کردن 6سیم موتور به 6 خروجی دستگاه محدود است ودستگاه دارای سه ورودی است که سه فاز شبکه به آن وصل می شود که یک فرد عادی با نقشه می تواند آن را نصب نماید جالبتر آن است که در صورت تولید این دستگاه  یک صدم هزینه روش تابلو را در بر دارد  به طور کلی در صورت تولید این دستگاه به نوبه خود انقلابی در صنعت برق ایجاد خواهد کرد

موتورهای سه فاز آسنکرن به دلیل مصرف کم بازدهی بالا تعمیرات آسان وقدرت بالا. همواره مورد توجه صنعتگران قرار گرفته و می گیرد در مقابل این همه مزایا این موتورها معایبی رانیز دارند.

یکی  از معایب مهم این موتورهااینست که در موقع راه اندازی باید به یکی دو اتصال ستاره یا مثلث راه اندازی شوند اگر با حالت مثلث راه اندازی شوند در موقع راه اندازی جریان زیادی از شبکه دریافت می کنند و این خود باعث آسیب رساندن به خود ودیگر دستگاههای مجاور می شود پس اگر بخواهیم این مشکل به وجود نیاید آنها را باید به حالت ستاره راه اندازی می کنیم ولی چون این  نوع موتورها باید درحالت مثلث زیر بار باشند ازاین روباید انها را اول ستاره راه اندازی کنند وبعد از اینکه به دور نامی رسید آنها را به حالت مثلث ارجاع دهند برای این کار چند راه وجود دارد

 1-استفاده ازکلید ستاره مثلث غلطکی

2-تابلوی مدار فرمان وقدرت ستاره مثلث

معایب سیستم های بالا:

1- کلید غلطکی که مهمترین عیب آن مکانیکی بودن آن است یعنی باید یک کاربر داشته باشد تا آن رابه حالت مثلث ببرد ودیگر آن که اگر در حالت مثلث برق قطع شود ودوباره وصل شود در همان حالت مثلث راه اندازی می شود

2- تابلو فرمان وقدرت که در حال حاضر رواج دارد یکی از مشکلات آن که همواره در عصر حاضر موردتوجه قرار می گیرد بحث فضایی است که اشغال می کند بعد بحث مونتاژآن است که یک تکنیسین باید آن را مونتاژ کند ودیگرآنکه برای این مدار نیاز به سه عدد کنتاکتور ویک رله تایمر. محفظه نیازمند است که هزینه زیادی متحمل صنعتگر می کند.

 

کنتاکتور AK-83                                        

این کنتاکتور یک کنتاکتور اعمالگر عمل ستاره مثلث بر روی موتورهای سه فاز است

این دستگاه در بهمن 83 طراحی گردیده وپس از انجام آزمایشات مربوط به کنترل کیفیت توسط متخصصین مرکز فنی حرفه ای ایلام در تاریخ 8/8/1384 به ثبت اداره مالکیت های صنعتی رسید وهم اکنون درحال طی مراحل قانونی جهت اخذ مجوز برای تولید انبوه می باشد

عملکرد دستگاه :این دستگاه عمل ستاره مثلث رابه جای (3 کنتاکتور یک رله تایمر وشستی - های استپ واستارت انجام می دهد) وجالب اینجاست که بازدهی آن بهتر و بیشتر از است

مشخصات فنی دستگاه وبرتری ها نسبت به روش قبلی

1- سرعت قطع ووصل آن زیاد واستهلاک آن کم است

2- ازنظر حفاظتی مطمئن وحفاظت مناسب تر وکامل تری دارد

3- مصرف بوبین آن 01/0 مصرف سیستم قبلی است

4- هنگام قطع برق مدارمصرف کننده نیز قطع می شود لذا بعد از وصل مجدد دستگاه در حالت ستاره است واین خود یک مزیت است.

5- مهمترین بحثی که امروزه مورد توجه صنعتگران قرار است بحث فضای اشغال شده است این کنتاکتوراز نظر حجمی در نوع خود بی نظیر است یعنی فضایی که اشغال می کند اندازه یک رله تایمر است وهمچنین می توان آن را بریک موتور نصب کرد

دستاوردهای NYPA در زمینه کاربردهای ادوات FACTS

ارسال شده دردر شبکه قدرت شهر نیویورک جهت کنترل توان عبوری از بخشی از شبکه، از یک سیستم الکت رونیک قدرت با سرعت عملکرد زیاد استفاده شده است.سیستم مذکور که در آن از جدیدترین فن آوری موجود در زمینه ادوات FACTS ( سیستم های انتقال AC انعطاف پذیرFlexible AC Transmission Systems ) استفاده شده است در پست Power Authoritys Marcy واقع در نیویورک نصب گردیده است. این سیستم این توانائی را ایجاد می کند که توان بیشتری از خطوط انتقالی که بخشهای شمالی ایالت نیویورک را به شهر نیویورک متصل می کنند عبور کند. این امر سبب بالا رفتن قابلیت اطمینان و بهره وری شبکه برق رسانی نیویورک شده و نیاز به احداث خطوط انتقال جدید را کاهش می دهد.

Mary Donohue ، مدیر شرکت برق نیویورک در سخنرانی خود در بین جمعی از مدیران صنعت برق، از بهره برداری از جبرانساز استاتیک تبدیلی (CSC) شرکت NYPA ، که پیشرفته ترین سیستم کنترل توان انتقالی دنیا محسوب می شود، خبر داد. طبق اظهارات وی، این بهره برداری از 21 ژوئن 2001 شروع شده است. بنا به گفته Donohue ، تصمیم استفاده از این سیستم، در راستای پاسخگوئی به بار روبه رشد شهر نیویورک، اتخاذ شده است. او همچنین می گوید: "استفاده از این سیستم در پست   Marcyباعث بالا رفتن قابلیت اطمینان سیستم انتقال ایالت و کاهش قیمت برق ارائه شده به مشترکین شده است

توان الکتریکی ترانسفورماتورهای واقع در پست Marcy از خطوط 765 KV که از کانادا می آیند تأمین شده و از این پست از طریق دو خط  KV 345 به نیویورک منتقل می گردد. یکی از این خطوط از منطقه Albany می گذرد و بیشتر اوقات، بارگذاری آن به مقدار ماکزیمم مجاز نزدیک است در حالیکه خط دوم که از کوههای Catskill می گذرد، بار کمتری برمی دارد.

CSC مورد استفاده درپست Marcy باصرف هزینه ای معادل 48 میلیون دلار وبا تلاش مشترک شرکت های EPRI , Siemens , NYPA و 32 شرکت  T&Dانتقال در ایالات متحده، کانادا و نیوزلند، و توسط شرکت Siemense Power T&D ساخته شده است.

سیستم CSC مزبور از دو اینورتر تریستوری با تریستورهای  GTO تشکیل می شود. هر یک از این نوع اینورترهای STATCOM (static synchronous compensators) قابلیت اتصال سری یاموازی به یکی از خطوط  KV  345را دارا میباشند.STATCOM های مذکور توانائی کنترل ±100-200 MVAR  را دارا هستند.

Joseph L. Seymor ، سخنگو و مدیر اجرائی شرکت NYPA میگوید: " بهره گیری از الکترونیک سریع نیمه هادیها بجای کنترلهای الکترومکانیکی قدیمی در CSC و دیگر ادوات FACTS ، کارآئی این تجهیزات را به جائی رسانده است که انتظار می رود روزی ادوات FACTS چگونگی انتقال انرژی الکتریکی به محل مشترکین را با انقلابی مواجه کند". وی می افزاید: " این فن آوری توانائی ما را در دریافت انرژی در محل مورد نیازمان از محل تولید آن به شدت افزایش داده است".

اثبات کارآئی سیستم نصب شده

شرکت NYPA اعلام کرده است که نصب اولین فاز CSC ، پایداری ولتاژ را تا حد قابل ملاحظه ای افزایش داده و قابلیت انتقال توان خط پر بار بین Utica و Albany را 60 مگاوات و توان قابل استفاده در کل ایالت را 114 مگاوات افزایش داده است. مسلما" با بهره برداری کامل از سیستم مذکور، اثر آن افزایش نیز خواهد یافت. تا پایان تابستان آینده برخی استراتژی های کنترلی به CSC نصب شده، افزوده خواهد شد. طبق اظهارات Abdel- Aty Edris ، مدیر فن آوری FACTS  مؤسسه EPRI ، سیستم CSC نصب شده می تواند روی دو یا چند خط همانند یک سیستم UPFC مشابه ترانس های Phase Shifling جهت تقسیم بازبین چند خط عمل کند. پس ازتکمیل طرح CSC مزبور، انتظار میرود توان قابل انتقال خط Utica– Albanyبه مقدار 120MW وکل توان قابل انتقال درسرتاسرایالت، 240 MW افزایش یابد.

Robert B. schainker مدیر بخش خطوط انتقال و پستهای EPRI در مراسم تقدیر از NYPA گفته است:

" NYPAهم اکنون بنیانگذار یکی از فن آوری های ادوات FACTS در دنیا شده است. با حصول توانائی جابجائی توان انتقالی از خطی به خط دیگر در مدت زمان چند میلی ثانیه به سادگی می توان بار خطوط دارای اضافه بار و بار خطوط پر بار گلوگاهی را با بار خطوط کم بارتر جابجا کرد".

حد اکثر سازی ظرفیت شبکه موجود

 قاعده زدائی در بازار فروش انرژی الکتریکی سبب شده است که تمایل به سرمایه گذاری برای افزایش ظرفیت شبکه انتقال، از بین برود. طبق برآوردهای انجام شده، افزایش ظرفیت انتقال سیستم قدرت ایالات متحده در دهه آتی اندکی بیش از 4% خواهد بود در صورتیکه این افزایش در ظرفیت تولید نصب شده به 20% خواهد رسید. در بسیاری از مناطق، بعلت مخالفت عموم، احداث شبکه انتقال مشکل تر از نصب تجهیزات تولید است. در نتیجه استفاده از ادوات FACTS مانندCSC ها می توان ظرفیت مفید سیستم های انتقال موجود را افزایش داده و به این ترتیب بر قابلیت های شبکه افزود. این امر می تواند در برقراری تعادل میان رشد تقاضا و ظرفیت شبکه انتقال موجود بسیار تأثیرگذار باشد.

کابل های فشار قوی:

کابل های فشارقوی الکتریکی عایق شده توسط پلیمر (Polymer-Insulated یا PE)

با تقاضای رو به افزایش برای انرژی الکتریکی، ولتاژهای انتقال نیز رو به افزایشند. انتقال توان زیاد به مسافت های دور، که به علت مبادله قدرت بین کشورها می باشد، نیاز به کابل های فشارقوی موثری دارد تا در مناطق شهری یا برای عبور زیر زمینی یا دریایی استفاده شود. امروزه ولتاژ عملیاتی کابل های فشارقوی الکتریکی تولیدی تا 500 kV افزایش یافته است.

کابل های الکتریکی polymer-insulated یا PE ضرورتا حاوی هادی فلزی با مقاومت پایین که توسط پلیمر عایق سازی شده است هستند. این عایق هادی ها را از یکدیکر و اطرافشان جدا می کند. یک غلاف(sheath or jacket) که بدوا بسته به خواص مکانیکی قالب ریزی شده از کابل مقابل محیط محافظت می کند. محتویات عمده ی دیگر میتوانند شامل لایه های نیمه هادی، screen فلزی، سیم فلزی تقویت کننده، و لایه ی بلوکه کننده ی آب. اگرچه یک تحول محتمل از مواد با خاصیت ابررسانایی ساختار سیستم انتقال نیرو را دگرگون خواهد کرد متخصصان استعمال گسترده ی آن را تا 20-10 سال آینده عملی نمی دانند. در حال حاضر تکنولوژی کابل های فشارقوی توسط گذار از پوشش کاغذی معمول گذشته،کاغذ آغشته به روغن تحت فشار که مشکلاتی از قبیل اتلاف عایقی بالا، مخارج عملکرد بالا و آلودگی و ... دارد ،به دای الکتریک اکسترود شده ی مصنوعی (extruded synthetic dielectric) مشخص می شود.

water treeing یکی از مهمترین عیوب در عملکرد کابل های MV و HV است و از این رو طراحی،ساختمان و مواد مورد استفاده به گونه ای که از نفوذ آب،به ویژه در کابل های زیر زمینی و زیر آبی، جلوگیری کنند مهم می باشد.

اگرچه ساختمان های بسیار متفاوتی از کابل های فشارقوی در بازار موجود هستند اما تمامی آنها دارای قسمت های ضروری زیر هستند:

* هادی ها

* شیلد های نیمه هادی

* عایق ها

 

* هادی ها:

هادی ها سیم های مسی با آلومینیمی هستند که می توانند مفتولی (solid) یا افشان (stranded) باشند. هادی های افشان برای بالا بردن انعطاف پذیری کابل استفاده می شوند. به علاوه می توانند maximum electrical stress را تا 20% افزیش دهند. در این هادی ها، آب میتواند در جهت طولی در خلل و فرج ها و فضاهای میان رشته ها به راحتی نفوذ (شارش) کند. جلوگیری از نفوذ طولی آب توسط پر کردن خل و فرج ها با ترکیبی از پلاستیک یا سوار کردن مواد جذب کننده ی آب (نمگیر = hygroscopic) درون رشته های هادی بدست می آید. راه دیگر! استفاده از هادی های مفتولی (solid) است که خلل و فرجی ندارند. برای مس، هادی های مفتولی بالای شماره 1AWG عملی نیستند. در آلومینیم drawn حالت معمول کاملا سخت بودن است. وقتی آلومینیم به جای draw شدن extrude می شود، حالتی نرم پیدا می کند. استانداردهای آمریکایی هادی مفتولی آلومینیمی را نمی شناسند اما این هادی ها در اروپا استاندارد هستند. کابل های فشارقوی می توانند دارای یک یا چند هادی درون کر (core)  باشند. در هادی های چند کره (چند هسته ای)، فاصله ی مناسب میان هادی ها باید از فرمول های مرتبط در تنش های الکتریکی محاسبه گردد. شکل دادن به هادی ها فرآیندهایی چون drawing، فشرده کردن، گداخته کردن (annealing)، پوشانیدن (قلع کاریtinning و روکش کاری کردنplating)، باندل کردن (bunching) و افشان کردن را در بر می گیرد.

شیلد های نیمه هادی:

تحقیق روی شیلد های نیمه هادی در توسعه ی کابل های فشارقوی نقشی اساسی را بازی کرده است. در کابل های فشارقوی، مواد نیمه هادی به منظور جلوگیری از تخلیه ی جزئی در فصل مشترک بین عایق و هادی و  بین عایق و لایه ی خارجی شیلد کننده مورد استفاده قرار گرفته اند و به علاوه تنش های الکتریکی را در لایه ی عایقی تعدیل می کند. آنها میدان الکتریکی یکنواختی حول عایق با کاهش دادن گرادیان پتانسیل روی سطح هادی های افشان و درون شیلد فلزی، فراهم می کنند و از تخلیه های جزئی (کرونا) در سطح هادی های افشان و عایق با نگهداشتن تماسی نزدیک بین سطوح داخلی و خارجی عایق جلوگیری می کنند. همچنین آن ها حفاظتی در مقابل آسیب های بوجود آمده از گرم شدن هادی در اتصال کوتاه ها ایجاد می کنند.

مشخص شده است که تحمل دای الکتریکی عایق به مقاومت حجمی (volume resistivity) ماده ی نیمه هادی وابسته است. فاکتورهای دیگر نیز – چون پلاریته، نوع و مقدار کراسلینک کردن ماده ی نیمه هادی – تنها اثری جزئی روی تحمل دای الکتریکی دارند. ناخالصی ها می توانند باعث بیشتر شدن پدیده ی درخت آبی شوند.

در کابل های قدرت، کوپلیمر های(copolymers) اتیلنی پر شده با Carbon Black هادی (CB)، مانند اتیلن ونیل استات و اتیلن اتیل استات، به طور متداول به عنوان لایه ی نیمه هادی استفاده می شوند. فاکتورهایی چون مقدار CB، کیفیت مخلوط کردن و دما (توسعه ی شبکه ی CB را متاثر می کند) تاثیر روی ویژگی های نیمه هادی های پر شده با CB می گذارد. افزایش بارگذاری CB و دمای فرآیند مقاومت حجمی (volume resistivity) را کاهش می دهد که معمولا بین 10 و 100 اهم cmاست و نباید از 4^10 اهم cm تجاوز کند.

* عایق سازی:

الف) XLPE

پلی اتیلن (PE) ترموپلاستی (نرمش پذیر دراثر حرارت) پلیمری نیمه بلورین semicrystalline است که دارای ویژگی های الکتریکی خوب می باشد (ضریب دای الکتریک پایین، تلفات دای الکتریکی پایین، استحکام عایقی بالا) به همراه خصوصیات دلخواهی چون تافنسtoughness مکانیکی و انعطاف پذیری،مقاوم در برابر مواد شیمیایی، فرآیند پذیر، و ارزان قیمت بودن. این خصوصیات آن را انتخابی دلخواه برای عایق سازی کابل های قدرت می کند و این در حالی است که عیب عمده ی آن که دمای ذوب پایین آن است تاثیری در تصمیم ما نمی گذارد.این عیب دمای عملیاتی را به C °75 محدود می کند. برای بهبود این خصوصیت، PE کراسلینک می شود (XLPE). کراس لینک کردن دمای ماکزیمم عملیاتی را تا C °90 و دمای اضطراری را تا C °130 و ماکزیمم دمای اتصال کوتاه را (گذرا) تا C °250 بالا می برد. گراس لینک کردن همچنین استحکام ضربه ای، پایداری اندازه، استحکام کششی، خصوصیات حرارتی و مقاومت شیمیایی را بالا می برد و خصوصیات الکتریکی، پیری و مقاومت در برابر حل شدن پلی اتیلن را بهتر می کند.

حفاظت: 

یک سیستم حفاظتی کامل شامل :

1-ترانسهای جریان و ولتاژ

2- رله های حفاظتی (تصمیم گیرنده وصدور فرمان(

3- کلید های قدرت    

حفاظت های یک پست 63 کیلو ولت  ASEA   شامل:

1ـ  حفاظت های خط 63 کیلو ولت : دیستانس بعنوان حفاظت اصلی و اورکارنت پشتیبان

2ـ  حفاظت های یک 63 کیلو ولت ترانس : اورکانت و REF )حفاظت های خارجی (

3ـ  حفاظت های یک 20 کیلوولت ورودی ترانس : دایر کشنال اورکانت – ارت فالت –REF و اندرولتاژ

4ـ  حفاظت های داخلی ترانس قدرت : رله بوخلس – شاخص سطح روغن – شاخص حرارت روغن – شاخص حرارت سیم پیچ – دریچه تنفسی – فشار زیاد داخل تپ چنجر که ناشی از ازدیاد گازها در اثر اتصالی بوجود میایند.

5ـ  حفاظت های یک 20کیلوولت خروجی: اورکانت – ارت فالت

6ـ  حفاظت باس کوپلر 20 کیلوولت:اورکانت-ارت فالت – دایرکشنال

7ـ  حفاظت های ترانس کمکی: شاخص حرارت روغن ورله بوخهلتز

8ـ حفاظت های بریکر400 ولت AC : جریان زیاد ـــ رلهً حرارتی

9ـ رله سوپرویژن جهت کنترل و مراقبت مدارات قطع بریکرهای 63 ورودی و ترانس وهمچنین ورودی KV20 ترانس قدرت .

رله های 63kv , 20kv REF در صورت به هم خوردن تعادل جریانی فازهای سیم پیچ واختلاف زاویهً 120 درجه بین فازها و در

نتیجه جریان دار شدن نقطه صفر سیم پیچ , عملکرد رله REF را بدنبال خواهد داشت .

 رله بوخهلتس

بوخهلتس یک رله حفاظتی برای دستگاهی است که توسط روغن خنک میشود و یا از روغن به عنوان ایزولاسیون در آن استفاده شده است و دارای ظرف انبساط نیز می باشد . این رله با بوجود آمدن گاز یا هوا در داخل منبع روغن دستگاه و یا پائین رفتن سطح روغن از حد مجاز و یا در اثر جریان پیدا کردن شدید روغن بکار می افتد و سبب به صدا درآوردن سیگنال و دادن علامت می شود و یا اینکه مستقیماً دستگاه خسارت دیده را از برق قطع می کند .

رله بوخ هلتس به قدری دقیق است که به محض اتفاق افتادن کوچکترین خطائی عمل می کند و مانع آن می شود که دستگاه خسارت زیادی ببیند . اگر از این رله برای ترانسفورماتور روغنی استفاده شود ، خطاهائی که سبب بکار انداختن رله بوخ هلتس می شوند عبارتند از :

جرقه بین قسمتهای زیر فشار و هسته ترانسفورماتور 

اتصال زمین

اتصال حلقه و کلاف

قطع شدن در یک فاز

سوختن آهن

چکه کردن روغن از ظرف روغن و یا از لوله های ارتباطی.

در خطاهای کوچک ، هوا یا گازهای متصاعد شده از روغن ، وارد لوله رابط بین ترانسفورماتور و منبع ذخیره روغن (ظرف انبساط) شده و به داخل رله بوخ هلتس که در یک قسمت از این لوله قرار دارد راه یافته و به طرف فسمت بالای رله که به صورت مخزن گاز درست شده است صعود می کند و در آنجا جمع می شود .

گازهای راه یافته به داخل رله بوخ هلتس به سطح فوقانی روغن فشار می آورد و باعث پائین آوردن سطح روغن در رله بوخ هلتس میگردد . این فشار به شناور بالائی رله ، منتقل میشود و آن را به طرف پائین میراند . حرکت شناور باعث بستن و یا باز کردن کنتاکتهائی میشود که جهت دادن فرمان در یک محفظه جیوه ای تعبیه شده است . در موقعی که خطا به صورت یک اتصالی شدید باشد ، گازهای متصاعد شده در اثر قوس الکتریکی  به قدری زیاد می گردد که موجب راندن موجی از روغن به داخل ظرف انبساط میشود . اگر سرعت موج روغن از مقدار معینی که قبلاً تنظیم شده است تجاوز کند ، قبل از اینکه گازها به داخل رله بوخ هلتس راه یابند ، دریچه اطمینان رله به کار می افتد و باعث قطع ترانسفورماتور از برق می شود . اگر رله بوخ هلتس دارای دو گوی شناور باشد ، دریچه اطمینان طوری تنظیم می شود که در صورتیکه سرعت حرکت روغن مابین 50 تا 150 سانتیمتر بر ثانیه رسید ، رله قطع کند .

در رله هایی که شامل یک گوی شناور میباشد ، دریچه اطمینان با شناور لحیم شده است و در این رله ها وقتی سرعت روغن به 65 تا 90 سانتیمتر بر ثانیه رسید رله عمل می کند .

رله فشار شکن:

یکی دیگر از رله های مهم در ترانسفورماتورهای قدرت رله فشاری ( PRESSURE RELIEF VALVE )است .

این رله عموماً بروی ترانس نصب میشود و برای هر 10000 گالن روغن یک رله فشاری باید طبق استاندارد نصب گردد.

عملکرد این رله در برابر فشار زیاد روغن است یعنی زمانی که به هر عللی فشار روغن در داخل ترانس از حد مجاز تعیین شده ( بسته به ظرفیت و قدرت ترانس ) بیشتر شود این رله عمل خواهد کرد . در قدیم ساختمان این رله ها بدین شکل بود که یک صفحه دیافراگمی شکل را بین تانک اصلی و رله فشاری قرار می دادند و یک تیغه چاقویی مانند بروی این دیافراگم قرار داشت که بر اثر فشار زیاد و بالا امدن صفحه دیافراگم و برخورد با تیغه چاقویی باعث پاره شدن صفحه دیافراگمی می شده و بدین طریق فشار روغن با خارج شدن روغن از محل رله فشاری متعادل می گشت . در این رله ها این عیب وجود داشته که اگر چه فشار متعادل میگشته اما بدلیل وجود منفذ خروج بروی ترانس (در اثر پاره شدن صفحه دیافراگمی ) تمامی روغن در کنسرواتور و بوشینگ ها تا رسیدن به سطح رله فشاری می بایستی تخلیه شود .

  سکسیونر: 

یکی از تجهیزات اصلی در هر ایستگاه برق فشار قوی سکسیونرها (Sectionner) هستند . لفظ سکسیونر لغتی است فرانسوی و به معنای جدا کننده ، و با  دیس کانکتورها (Disconnector)  نباید اشتباه گرفت ( دیس کانکتور به معنای قطع کننده است ) . اما بصورت عام این دو لغت را  تواماً در نقشه ها و محاورات برای سکسیونرها بکار می برند .

عمل و کار سکسیونر در ایستگاههای برق فشار قوی جدا کردن قسمتها و سکشن های مختلفی از تجهیزات است و عملیات مانور بروی تجهیزات را مهیا می سازد . نکته قابل ملاحظه در استفاده از این تجهیز ، عدم قابلیت فرمان دهی در زیر بار است . یعنی بروی سکسیونرها  در حالت On Load نمیتوان مانوری انجام داد چرا که قابلیت قطع و وصل در زیر بار را ندارد و موجب صدمات و خسارات جدی به خود سکسیونر و دیگر تجهیزات میشود . در طراحی سکسیونرها هیچ تمهیدی جهت جلوگیری و محدود کردن قوس های شدید الکتریکی ناشی از باز و بسته کردن مدارات بکار نرفته است به همین خاطر تنها در حالت بی باری قادر به انجام فرمان بروی آن هستیم .( البته در انواعی از سکسیونر های فشار متوسط (20 کیلو ولت ) سکسیونرهای خلا بکار میرود .)

 

ترموویژن:

یکی از دستگاه های تست تجهیزات در پست های انتقال و فوق توزیع ابزاری است بنام ترموویژن . این دستگاه در شکل های مختلف و عملکرد گوناگون ، کاربردی مشابه دارد که به آن می پردازیم .

امروزه با توجه به نیاز مبرم به برق و حداقل رساندن قطعی های ناخواسته و رضایت مندی مشترکان و پایداری سیستم برق و حس اعتماد مشتریان به جریان و روند مطمئن در سیستم برق رسانی برنامه های پیشگیرانه ای تنظیم می گردد که با تست و بررسی تجهیزات از صحت عملکرد آنها مطمئن میشویم . با توجه به اینکه بسیاری از قطعی های ناخواسته مربوط به اتصالات و جمپر ها وکابلها و کلمپ های متصل به تجهیزات است لذا ایجاب می کند که علیرغم بررسی چشمی و سرویس و آچار کشی این نوع اتصالات از دستگاه  ترموویژن جهت بررسی مقدار دمای آن تجهیز نیز آگاه شویم . با توجه به اینکه اگر اتصالی ، ضعیف باشد ، طبق قانون اهم ، مقاومت درآن نقطه زیاد شده و ایجاد حرارت و گرما میکند و در نهایت موجب ذوب شدگی و باز شدن اتصال میشود

تابلوهای برق :

انواع تابلوها : تابلوی ایستاده قابل دسترسی از جلو- سلولی-تمام بسته دیواری که خود این تابلو ها می توانند اصلی- نیمه اصلی و فرعی باشند .

تابلوی اصلی: در پست برق و بطرف فشار ضعیف ترانس متصل است .

تابلوی نیمه اصلی :اینگونه تابلو ها ی برق بلوک ساختمانی یا قسمت مستقلی از مجموعه را توزیع و ازتابلوی اصلی تغذیه می شود .

تابلوی فرعی : برای توزیع و کنترل سیستم برق خاصی مانند موتور خانه- روشنایی و غیره به کار می رود و از تابلوی اصلی تغذیه می شود .

معمولا تابلو های موتور خانه از نوع ایستاده و بقیه تابلوها از نوع توکار تمام بسته می باشد (در این ساختمان تماما" به این شکل می باشد)در این ساختمان لیستی تهیه شده که شامل قطعات مکانیکی و الکتریکی داخلی تابلو می باشد. این لیست شامل ضخامت ورق - فریم تابلو – روبند- نوع رنگ کاری - جانقشه ای - یرق آلات- نوع تابلو(یک درب- دو درب - نرمال - اضطراری) اسم شرکت سازنده تابلو - اسم تابلو – چراغ سیگنال (رنگ – تعداد- وات - نوع لامپ - فیوز ) مشخصات فیوزهای داخل تابلو بعلاوه پایه فیوز – کلید مینیاتوری (تکفاز - سه فاز- ولتاژ قابل تحمل ) رله- کنتاکتور –کلید گردان (با مشخصات کامل ) مشخصات ترمینال - مشخصات شین فاز - نول- مقره های پشت شین - نوع سیم کشی داخلی تابلو- نوع سیم کشی خط به تابلو - طریقه انتقال سیم در تابلو(ترانکینگ-استفاده از کمربند) استفاده از سیم یک تکه در تابلو – شماره گذاری خطوط روی ترمینال –استفاده از کابلشو . تمام این عناوین با مشخصات کامل می باشد .وجود این مشخصات باعث عمر بیشتر تابلو- خطر کمتر و تعویض آسانتر می شود .

• وجود سیم ارت در تابلوی برق ضروری و با رنگ سبز می باشد • خطوط R -S - T به تر تیب با رنگ زرد- قرمز- آبی - سیم نول با رنگ سیاه می باشد

• در بعضی از تابلو ها روی درب تابلو ها یک سری کلید وجود دارد START- STOP

یا یک کلید گر دان که برای روشن و خاموش کردن روشنایی و یا موتور به کار می رود .

• برای تابلو ها دو نوع نقشه می کشند 1 - رایزر دیاگرام که مکان تابلو در آن قید شده است .2 - نقشه داخل تابلو (که خطوط - فیوز و کلیدها در آن کشیده شده است )

نکات مر بوط به رعایت مسائل ایمنی بر اساس نشریه سازمان برنامه و بودجه و یا 110می باشد .

• شین ها با رنگ نسوز رنگ آمیز می شود

• کلید ورودی باید خودکار باشد. در مواردیکه از کلید و فیوز جداگانه استفاده شود کلید باید قبل از فیوز نصب شود . بطوریکه با خاموش کردن کلید , فیوز نیز قطع شود. کلید اصلی حتی الامکان گردان باشد و از فیوز فشنگی استفاده شود .

• سیم کشی داخلی تابلو با سیم مسی تک لا با عایق حداقل 1000ولت با مقطع مناسب انجام شود .

• ارتفاع با لاترین دسته کلید تابلو 175 سانتیمتر بیشتر نباشد و همچنین قسمت میانی از سطح زمین 160 سانتیمتر باشد .

• استفاده از سیم 5/1 برای روشنایی با کلید مینیاتوری10 آمپر و سیم 5/ 2 برای پریزبا کلید مینیاتوری 16 آمپر می باشد .

سیستم آلارم: 

بطور کلی هدف از کاربرد سیستم آلارم و سیگنال در پستهای فشارقوی آشکارساختن خطاها ومعایب بوده و در صورتیکه بهره بردار هنگام کار و مانور دچارخطا شود سیستم آلارم بهره بردار را مطلع وکمک می کند تا سریع تر خطا و عیب مشخص و قسمت معیوب در صورت نیاز مجزا واقدامات لازم انجام گردد .

خطا یا فالت با آلارم (بوق) شروع و همزمان سیگنال چشمکزن مربوطه در پانل آلارم ظاهر می گردد .

وظیفه بهره بردار در این مواقع به این ترتیب است که  , ابتدا بوق را با دکمه پوش باتون(ALARM,STOP) قطع می نماید سپس کلیه سیگنال های ظاهر شده را کامل یادداشت نموده , بعد از آن دکمه (ACCEPT)

را جهت پذیرفتن یا ثابت نمودن سیگنال فشار می دهیم .

اگر فالت گذرا باشد , که سیگنال ریست شده و در صورتیکه فالت پایدار  باشد , سیگنال ثابت میگردد .

مرحلهً بعدی پیگیری وبرسی جهت برطرف نمودن خطا می باشد .

تشریح سیگنالهای پست kv63 :

1- آ لارم وسیگنالهای نمونه یک بی خط KV63 .

 2- آلارم وسیگنالهای نمونه یک ترانسفورماتور 63/20 KV .

 3-آلارم وسیگنالهای نمونه ـــ  قسمت 20 KV .

 4- آلارم وسیگنالهای نمونه ـــ  یک ترانسفورماتور کمکی ویک ترانسفورماتورارتینگ .

5 -آلارم وسیگنالهای عمومی .

مراحل مانور:

-1 مراحل بی برق نمودن یک بی خط KV63 ونحوهً زمین :

قطع بریکر خط , آرزمایش توسط سلکتور سویچ آمپرمتر , باز نمودن سکسیونرهای طرفین بریکر , آ زمایش خط توسط فازمتر , سلکتور ولتمتر خط , بستن سکسیونر زمین , نصب تابلوهای ایمنی روی تابلوی فرمان وکشیدن نوار حفاظتی در محدوده کار گروه .

2- مراحل بی برق نمودن یک خط KV 20 و نحوه زمین :

قطع بریکر خط , آرزمایش توسط سلکتور سویچ آمپرمتر, بیرون آوردن  بریکر کشویی از داخل فیدر, آزمایش سر کابل خط توسط فازمتر, بستن کابل ارت به قسمت زمین فیدروتخلیه فازها با استفاده ازفازوسط , نصب  تابلو ایمنی وهشدار دهنده روی فیدر وتابلوی فرمان بغل کلید مربوطه .

3ـ مراحل بی برق نمودن

 یک ترانس قدرت :

جابجایی تغذیه ولتاژ V400 کمکی در صورت نیاز .

جابجایی تپ چنجرترانس ها  

کنترل مقدار بار ترانس ها و امکان مانور بدون خاموشی .

قطع بریکر KV20 , قطع بریکر KV63 , خارج نمودن بریکر کشویی ورودی KV20  , بازنمودن سکسیونر KV63 ترانس یاد شده ,

قطع کلید پاپییونیV400 بیرونی, زمین نمودن سرکابلKV20 ازطریق اتصال زمین سرکابل ورودی,بستن کابل ارت سمتKV63ترانس قدرت و جدا نمودن قسمتهای برق دار از قسمتهای بی برق با علائم ایمنی .

4ـ مراحل بی برق نمودن باس بار KV20 جهت کارگروه :

 قطع کلید بریکر و فیوز تغذیه بریکر , ثبت بار وثبت زمان قطع بریکر

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد